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Boundary and interface conditions for high-order finite difference methods ap-
plied to the constant coefficient Euler and Navier—Stokes equations are derived. The
boundary conditions lead to strict and strong stability. The interface conditions are
stable and conservative even if the finite difference operators and mesh sizes vary
from domain to domain. Numerical experiments show that the new conditions also
lead to good results for the corresponding nonlinear problersess Academic Press

1. INTRODUCTION

In many computational problems, low-order finite difference methods (second o
or less) are not accurate enough. Examples in which high-frequency components |
solution must be resolved by using high-order finite difference methods (HOFDM) incl
aeroacoustics, turbulence, and transition simulations, the propagation and scatter
electromagnetic waves, and simulation of reactive flows at high speeds [1, 6]. The effici
[7] of HOFDM can be used either to increase the accuracy for a fixed number of mesh p
or to reduce the computational cost for a given accuracy by reducing the number of |
points.

The main reason that low-order finite difference methods are used in practical calcula
is because of the difficulty that arises for HOFDM near the boundaries of the computat
domain. On a Cartesian mesh, itis quite easy to derive nonsymmetric boundary operato
have high formal accuracy; the difficulty is to derive highly accusatgstable operators. In
[8, 9] HOFDM are constructed based on the work in [10, 11]. In these strictly stable sche
the growth rates of the analytic and semidiscrete solution are identical. Strict stabili
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622 NORDSTROM AND CARPENTER

obtained by constructing discrete operators that satisfy a summation-by-parts (SBP)
which mimics the integration-by-parts rule in the continuous case. For calculations o
long times, strict stability is very important because it prevents error growth in time f
fixed AX.

In [12] it was shown that many G-K-S stable [13] (convergence to true true solution
AX — 0) scalar schemes were not strictly stable. Moreover, many scalar schemes that \
both G-K-S stable and strictly stable exhibit time growth when they are applied to syste
of equations. The underlying reason for the error growth in time is caused by the way
mathematical boundary conditions were imposed. An orthogonal projection operatoris u
to impose the mathematical boundary conditions in [14, 15]. In the so-called SAT (simul
neous approximation term) procedure [16], a linear combination of the boundary conditi
in the form of a forcing function and the differential equations is solved near the bounde
Both these methods impose the correct boundary conditions and preserve strict stabili

Another important concept is strong stability. An approximation is strongly stable if tt
solution, including the values at the boundary points, can be estimated in terms of all c
in the problem [17]. The stability estimate in the strongly stable case leads directly to
error estimate if no extra or numerical boundary conditions are necessary. Stability anal
using the Laplace transform technique leads to strong stability if the Kreiss conditior
satisfied; see [18, 9, paper IV]. Note that strict stability leads to strong stability, but strc
stability does not imply strict stability.

Most investigations regarding HOFDM are done on linear hyperbolic model equatic
with constant coefficients on a uniform mesh. However, nonlinear Navier—Stokes cal
lations on nonuniform meshes have been performed [19]. One of the conclusions in |
was that the treatment of the metric derivatives is a crucial point for nonsmooth mest
This problem is analyzed in [20], where so-called mimetic difference operators (discr
operators with the same symmetry properties as the continuous operators) are derive
[15], strict stability for parabolic and hyperbolic systems in curvilinear coordinates on
single domain were investigated.

Generating a smooth grid around a complex configuration can be very difficult, if n
impossible, and is often the most time-consuming aspect of the solution procedure.
fact has limited the use of HOFDM in practical calculations to the small class of simg
geometries which can be smoothly mapped onto the unit cube. In this paper we consic
structured multiblock approach in which each subdomain is discretized by using a disc
operator with the SBP property. The subdomains are patched together to a global dor
by using suitable interface conditions. This technique was used in [21-23] for Chebys
spectral methods.

In [24], stable and conservative interface conditions for HOFDM applied to the sca
advection—diffusion equation on multiple domains were derived. In each subdomain the -
size was constant but significantly different from that in the adjacent subdomains. Al
the finite difference operators could vary from subdomain to subdomain. In this paper
will generalize the results in [24] and extend the analysis to the one-dimensional cons
coefficient Euler and Navier—Stokes equations.

The rest of this paper will proceed as follows. In Section 2, some basic definitions
given. In Section 3, the Navier—Stokes equations in conservative, primitive, and chal
teristic variable form are given. In Section 4, the continuous problem is analyzed, wt
the discrete problem is investigated in Section 5. Numerical experiments are performe
Section 6 and we summarize and draw conclusions in Section 7.
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2. DEFINITIONS
Consider the linear initial boundary value problem

wy = Pw+486F(X, 1), xXeQ;t>0,
w = §f(X), X et=0, Q)
Lcw = §g(t), xel;t>0,
whereP is the differential operator arld. is the boundary operator. The initial functiéh,
the forcing functiors F, and the boundary datg are the data of the problenw;denotes the
difference between a solution with dataF, g and one with datd + §f, F +8F, g+ 9.

There are many concepts of well posedness (see [17]). Here we consider the follo
definition.

DEFINITION 1. The problem (1) is strongly well posed if the solutioiis unique, exists,
and satisfies

t t
||w||é+/O wl2dt < Kce"°t{ll5fllé+/o (||8F||§z+||ag||%)dt}, (2

whereK. andn. may not depend o8F, &f, §g. | - |l and|| - || are suitable continuous
norms.

The semidiscrete version of (1) is
(wipr = Qw; +5F;(t), X; e 2;t>0,

LDwJ- = 4g(1), Xj € r;t>0,

whereQ is the difference operator approximating the differential operRtosF; is the
forcing function,sf; is the initial function,Lp is the discrete boundary operator, wher
numerical boundary conditions are included, 4gds the boundary data. It is assumed the
(3) is a consistent approximation of (1).

Closely related to the concept of well posedness is the concept of stability.

DErFINITION 2. The problem (3) is strongly stable, if for a sufficiently fine mesh, tf
solutionw; satisfies

t t
||w||§z+/0 w2 dt < l<de"d‘{||6f||é+/O (ISF 113 + 1591I1%) dt}, 4

whereKqy andng may not depend oAF;, éfj, ég. || - [lo and|| - |- are suitable discrete
norms.

DerINITION 3. The approximation (3) of (1) is strictly stable if the analytical and discre
growth rates (see (2) and (4)) satisfy

nd < nc + O(AX), %)

whereAx is the mesh size.

For later reference we also define some useful matrix operations; see [25].
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DEFINITION 4. Let Abe ap x g matrix and letB be anm x n matrix, then

a0,0B aO,qflB
A® B= :

ap_l,oB ap_]_.q_]_B

The p x g block matrix A® B is called a Kronecker product.

There are a number of rules for Kronecker products (see [25]). In this paper we will mé
use of

(A®B)(C®D) = (AC)® (BD), (A®B)'=A"T®B". (6)

The following lemma will be used frequently below; it is a direct consequence of the fil
rule in (6).

LEMMA 1. Let A be an mx m matrix let B be an nx n matrix let A= I, ® A, and let
B=B® Im; thenAB = BA.

3. THE EULER AND NAVIER-STOKES EQUATIONS

The one-dimensional constant coefficient Navier—Stokes equations in primitiye (
characteristicC), and conservative) variable form are

Wi + AW = eBW,x, Ci+ ACx =eXCyx, Qi+ F| =¢F), @)
respectively. Withe =0, Eq. (7) becomes the one-dimensional constant coefficient Eul
equations. The overbar is used to denote variables with a constant state. The relation bet
W, C, Q, whereW = (p,u, )T is

C=RSW Q=TW, (8)
where

-2y 1v2 -y —=Dj2y

R=|Joy-D/y © ~1/ 7 :
YV2y 1v2 Jy=DJZy
c?/Jy O 0
S=+2 0 oC 0 ;
0 0 o/\/y(y —1HME
1 0 0
T = u 0 0

C2/(y(y =)+ U2/2 pu p/(y(y —DHMZ)

Note thatRR" = I5.
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The transformation (8) implies that the matrices and fluxes in (7) are
u o 0

u yMZ |, ©)
0 (y—1c*M2 u

0 0 0
B=|0 &+20/0 0O » (10)
0 0 yk/(Prp)
_ Ju-¢ 0 o0 - 6+6 o 0-9
A= 0O u O , X= > ap  a?p —ad |, (11)
0 u+c 6—-¢ —ap 6+¢
Fl=TAW=TAT!Q, FY=TBW =TBT'Q, (12)

The dependent variables and parametens, T, p, ¢, M, 1, A, k, Pr, y, ande are re-
spectively the density, y, zcomponents of the velocity, the temperature, the pressure,
speed of sound, the free-stream Mach number, the shear, and second viscosity, the coef
of heat conduction, the Prandtl number, the ratio of specific heats, and the inverse Rey
number. The notationd = (A + 21)/p, ¢ = (y — V)i /(Prp), « = /2/(y — 1) have also
been introduced.

4. THE CONTINUOUS PROBLEM

In this paper we will consider interface conditions between subdomains. However,
terface conditions are closely related to boundary conditions; therefore, we start with
single domain problem.

4.1. The Continuous Single Domain Problem

To make the presentation self-contained, some results in [27] are included in this sec
Consider the Navier—Stokes equations on characteristic form,

Ci+ ACx = eXCox + F(x,1), t>0;-1<x<1,
C = f(x), t=0-1<x<1,

L_1C =g_1(D), t>0x=-1,

L. 1C = ga(h), t>0x=+1,

(13)

whereC = (pCcu— p, a(pC? — p), pcu+ p)',0<e <« 1, andL_q, L, are the boundary
operators. Fou > 0, there is inflow ak = —1 and outflow ak = 1.

4.1.1. Well Posedness
Let

+1
(u,V>=/1 UTVvdx, (U,U)=|UJ?% [UIZ2= U} +IUE_,,
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denote thel, scalar product, thé., norm, and the boundary norm, respectively. The
boundary conditions (see [27, 22]),

(K+|K|>C

5 — eXCy=0-1. (14)

L_.C=

L.C = {Wc - eicx} g, =12 (15)

and the energy method applied to (13) leads to

ICIIZ = —2¢(Cx, XCo) + 2(C, F) — [CTAC —2CTg4],_,

—[CTA0C+2CTg14],_,,. (16)
In (14)~(16),9+1 = (91, G2, G — (2/c)) 7, |A| = diag(|21l, [A2], [A3]), and
- [A1] 0 (rl—2rp)/2
A =|A]l, Ao= 0 A2l 0 . (17)
(Al —20)/2 0 [Ag]
Integration of (16) leads to
T _ S T
||C||2+e”T{2€/ (Cx, XCe M dt + é/ ||C||re”‘dt}
0 0
2 /7 1 /7
< e'”{n f112+ 7/ Iglié e dt + = / IF|2e™ dt}, (18)
3 Jo n Jo

where 0< 5 < 1,8 =min|d;|, D=|A|H, and

|A3] — |Aq] _lAgl = [Aq]

H =diagHy, 1, Hg), H = > "1 = Ast T Ml
AP LR = el T a1l

Note that (14), (15) reduce to the characteristic boundary conditions for the Euler equati
ase — 0.

Uniqueness follows directly from the estimate (18). Existence can be shown by using
Laplace-transform technique or via difference approximations; see [26, 28]. Since (18
of the form (2), we can conclude that the following theorem holds.

THEOREM1. The problen{(13), (14), (15)s strongly well posed.

4.2. The Continuous Multiple Domain Problem

In this section we split the domain-fL, 1] into [-1, 0] and [0, 1] and focus on the
interface problem at = 0. The two coupled problems are

U+ AUy = eXUyx + F(X, 1), t>0; —1<x <0,
U= fx), t=0, -1<x<0,
) - (29)
LU =g-1(0), t>0 x=-1,

Lo(U — V) =0, t>0; x=0;
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Vi + AVy = eXVox + F(X, 1), t>0; 0<x < +1,

V = f(x), t=0; 0<x=<+1,
(x) + (20)
Lo(V —U) =0, t>0;, x=0,

LV =g, t>0, x=+1,

respectively. The characteristic variables in the left [ 0] and right [041] domain areJ
andV, respectively. The coupling between (19) and (20) is given by the opdrgator

By subtracting (13) from (19)—(20), by transforming the problem on+Q] onto
[—1, 0] via the transformation — —£&, and finally by replacing with x, we obtain

Yt + A = eXux, 1>0; —1<x<0,

Y =0, t=0, —-1<x<0,
L_,U =0, t>0 x=-1, (21)
L1V =0, t>0 x=-1,
Lo —V) =0, t>0; x=0,
where
U Uu-c\ - +A 0 - X 0
v=(v)=(v2c) 2= (% %) *=(5 %)
and
x (A+IAD~  =m o~ - A—|AD)~  —n
L,0 = wu —eXUy, LV = {(ZlDV—i-eXVX} ,i=12 (22
i

4.2.1. Well Posedness
The energy method applied to (21) leads to

IWI2 = [ AY — 269 Ky — 2e (Y. Xio).

The analysis of the single domain problem implies that the boundary terms atl are
negative semidefinite with the boundary operators (22). At the intekac@, we have

[lﬁ Ay —2eyT wa <=0
U-Vv 0 A —eX 0 -V
1| G+vV K 0 0 —eX UO+V
S ‘ - (23)
2|1 G =), 0 0 0 W — V),
U + V)y —eX 0 0 U + V)

Well posedness for the Euler equatioas{0) requires) —V =0 sinceA is nonsingular.
With that choice we get

[WTAY — 29 Xy ] o = —2¢0" XU + )y = —2¢(RSTU)TBW; + W)y,

where( ﬁS_)—lU =W, (§§)‘1V =Wgr genotes the primitive variables in the left and righ
domain, respectively. The structure Bf(see (10)) and a transformation to the origina
coordinate system lead to the following theorem.
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THEOREMZ2. If theoreml holds and the interface conditions

I3 Uu-V 1 0 1
(eDl>(<U—V>x> =0 D= (1 o —1> (24)

are usedthen(19)and(20) are strongly well posed.

Remark. The problems (19) and (20) are strongly well posed in the sense that t
solutions can be estimated in terms of the data in the corresponding one domain prot
(13).

Remark. The condition (24) in primitive variable formulation is

I3 We-We \ _, o _(010
€D J\(W. —WR)x/) ~ 2~ \o o0 1)

5. THE DISCRETE PROBLEM

Let U, DU be the numerical approximations of the scalar quantitiasaduy, respect-
ively. The approximatiorDU of the first derivative

DU =P'QU, Pu—Qu=PTyq, [Tal=0(AX", AX")
satisfies the SBP rule,
U, DV)p =UnVN —UgVp — (DU, V)p, (25)
where
U,V)p=UTPV, P=P", Q+Q"=D, D=diag[-1,0,...,0,1] (26)

and O< pminAX | < P < pmaxAX | . Operators of the SBP type arise naturally with centere
difference approximations, for example, see [11, 29, 12, 30].

The second derivative can be obtained by applying the first derivative operator twi
Such an approximation satisfies the SBP rule (25) exactly. However, there are drawb:
with such a procedure. A second derivative formed in that way is unnecessarily wide
inaccurate and can lead to odd—even mode decoupling. A second derivative operator
the properties

DU = P7IRU, Puy— RU=PTy, Te=O(AX™ AX"), (27)

R=(-S"M + D)S, (28)

was suggested in [24]. The matiixis given in (26);M is positive definite, i.el) TMU > 0
and O0< MpinAXI <M < MpaxAXI.

Sis a diagonal matrix with a discrete representation of the first derivative on the first
last rows,

{SUlo = {Du}o = Ux(Xo, t) + Tea, {SUln = {Du}n = Ux(Xn, t) + Tez,
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where|Tg| = O(AX") and

So So1 So2  So3
0O 1 O
1 0 .1 .O
0 1 0
0 1 0
Sin-3 Sin-2 Sin-1 Sin

The second derivative defined in (27) and (28) satisfies a modified SBP rule. We have
(U, D?V)p = Up{DV}; — Up{DV}o — (SU)"M(SV).

The notation|Tey |, | Teo| = O(AX™, AX™) and |Tez| = O(AX") means that the approxi-
mation of the differential operator is accurate to ordein the interior of the domain, to
ordern at the boundary, and that the approximation of the boundary conditions is accu
to orderr. The relation between the different orders of accuracy,men, r, is discussed
in Section 5.1.2 below.

So far we have considered difference approximations of scalar quantities. The c
sponding approximations for vector quantities are defined by using Kronecker prod
(see Definition 4). The spatial operatdsD? and the matrices that define them are of th
form B ® I3 in this paper. As an exampl®, 1Q meangP1® 13)(Q® I3) =P 1Q® la.

In the sequel, that notation is implied.
LetH = HT > 0; for later reference we introduce the notations

U, Vg =UTHV, U, Uu=lUlg. IIVIE =UPo+ U,  (29)

5.1. The Discrete Single Domain Problem

We introduce a uniform mesk = —1+iAX, Xo=—1, X, = +1. The finite difference
approximation of (13) with the SAT technique [16] for boundary conditions is

Ci+ADC = eXD*C+F +P o1 (LP,C—g1)e 1 +041(LDC—gi1)en],

(30)
C() = f,
where
D= P*1Q®I3, D2=P1IRQ I, (31)
R=0QP1Q®Il;, or R=(—-S"TM +D)SQ® I3, (32)

A=1,®9A, X=1,8X, e1=(1....,00"®13 e1=(,....,)T®15. (33)

The unknown diagonal matrices ; ando 1 will be determined below.
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5.1.1. Stability

The energy method leads to

d - . - .
a||c:||2 = —CT(AQ+ Q"A)C +¢CT(XR+ R"X)C + 2(C, F)p
+2C501[L2C — g.1] +2C{041 [LC — gia]. (34)
The definition of the first derivative operatBr1Q and Lemma 1 leads to
—CT(AQ+ Q"A)C = CJACy — C]AC,. (35)
The definition of the second derivative operat®s= (—S'M + D)S and R=QP1Q
yields
CT(XR+ R"X)C = —2CoXDCq + 2Cy XDCp — (SO (XM + (XM)T)(SC)  (36)
CT(XR+ R"X)C = —2CoXDCy + 2C,XDC,, — 2(P1QC)TPX P 1QC, (37)

respectively.
By introducing (35), (36), and (37) into (34) we get

d . _ _
a||(:II% +2¢(DC, XDC)y = [CTAC — 2¢CTXDC]i=0 + 2(C, F)p
+2Cgo_1[LP,C —g_1] +2CJ 041 [LD,C —g41], (38)

where the scalar products and norms are defined in (29).

The boundary operatots®, LEl are the discrete versions of (14)—(15), with one impor-
tant modification. In [27] it is shown that the two outflow conditions in (15) determine th
value of the last row oK C, in terms of the in-going characteristic variable and boundar
data; i.e., (15) implies that

A1 — |l

{—eXCy)a = — 5

Ci+o1—(2/a)g2, Xx=+1 (39)

To explicitly incorporate (39) into (30) we use
A+I|A —
L0.C = {(_';DC - EXDC} gL, (40)
i=0

LElC =

I=n

{Wc - eipc} — g1 (41)

where(g.1)3 is equal to the right-hand side of (39). The boundary conditions (40), (4
inserted in (38) yield
d ~ _ - _
3ICllp = —2¢(DC, XDC)u +2(C, F)p + {CT[+A +o-a(A + [ADIC
+{CT[—2eX — 2e0_1X]DC},_, + {CT[-A +o11(A — |ADICY, _,
+{CT[+2eX — 2e0,.1X]DC},_ + {03,C*C3(hy — 111D}, _,
+ Zng_l - 2C,Tg+1. (42)
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The choicer_; = —lz ando,; = I3 leads to

IC|IZ = —2¢(DC, XDC)y + 2(C, F)p — [CTA|C — 2CTg 4], _,

—[CTAGC +2CTg 4] (43)

i=n’

i.e., a growth rate which is exactly the same as in the continuous case (compare (43)
(16)). The definitions of\|, Ao are given in (17). Integration of (43) leads to

T . s T
IICII%+e”DT{26/0 (DC, XDC)He_"Dth-?D/O ||C||%De‘”D‘dt}

T 2 2 T 2 —npt 1 T 2 A—npt
e dlflle+— [ lglr,e ™ dt+— [ [[Fl[pe™™ dt,. (44)
ép Jo no Jo
The estimate (44) is similar to (4) and hence (30) is a strongly stable approximation.
problem (30) is also strictly stable (we can chogse=1n andép = §; see (18), (5)). We
can summarize the result in the following way.

THEOREM 3. The approximatior§30), (40), (41)of the problem(13), (14), (15)is both
strictly and strongly stable #_; = —lz ando;; = Is.

5.1.2. Accuracy

The problem describing the deviati@) = C(xj, t) — C; (t) between the exact continu-
ous solution and the discrete approximation given by (30) is

Et + ADE = eXD?E + P~ %[o_1(LPE)e 1 + 041 (LD E)ept] + T
(45)
E©0 =0.

T =TPO 4 TBC s the truncation erroif °© andTBC come from the approximation of the
differential operator and the approximation of the boundary conditions, respectively.
truncation errors have the general structure

O(AX™ O(AxTb)
O(Ax™M) 0
TPO = : , TBC= : . (46)
O(AX™) 0
O(AXM) (’)(Ax“‘”)

In [31, 32] it is shown that difference approximations to mixed hyperbolic-parabo
equations retain the accuracy of the interior scheth@\(x™)) if a finite number of points
(independent of the total number) are closed with boundary stediisx")) that are one
order less accurate. A requirement for that conclusion is that an energy estimate h
which in turn means that the mathematical boundary conditions must be approximate
the order of the internal scheme. The discussion above impliestaah — 1 andr =m
are necessatry.

We will now apply the theory in [31, 32] to the type of difference approximations consi
ered in this paper, i.e., where difference operators of the SBP type are used, togethel
a penalty formulation for the boundary conditions.
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First, we splitE and theT into two parts, i.e.E = E'+ E2andT =T+ T2, where

0 Jdo
gl 0
Ti=| | =0@x™, T?2=]| : | =0(ax™™P). (47)
On-1 0
0 On

Next, we use the energy method to estiméte The energy method applied to (45) with
E, T replaced byE?, T1, and Theorem 3 leads directly to

IE* P < O(AX™).
Finally, we use the Laplace transform technique to take care of the boundary error
estimateE?. So far, the treatment has been general. However, in order to keep the algeb
complexity at a reasonable level, we now need to simplify and be specific. We will consi

the inviscid € =0) Euler equations at an inflow boundary, where the first derivative
approximated with

, P =AXx T . (48)

—2 2 :

The half-plane problem obtained by Laplace-transforming (45) &itii replaced by
E2, T2 becomes

SE3+ A(E2— E2) = o_1(A +|ADEZ + AxGo,
SEZ2+A(E2,—E2))/2=0, =1, (49)

where§ =sAx. The second and third equations in (49) lead to

Ej2=al 0 K]]_—|-02 1 K2]+CJ‘3 0 ng,, (50)
0 0 1
—(§/KJ)+\/1+(§/)\])2, Aj >0,
Kj = 0 )»j =0, (51)

_(g/)\.j) — 1+ (§/)uj)2, Aj <0,

where the branch of the square root is the one with positive real part {6y R®. The case
whenj =0 presents no problem; it only reduces the number of equations in (30). In
sequel, we assumig # 0.
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The first equation in (49) leads to
E(®o =Axgo, E® =diags+Ajkj — (A +0 .00 +14jD)), =123
A nonsingularE(8)), i.e.,
det(E(5) #0, Re®) >0, (52)

and (50), (51) lead ttﬁf| < constAx{o| for Re(8) > 0;i.e., the Kreiss condition is satisfied.
Parseval’s relation and the fact thfx?(t) cannot depend ogy(T) fort < T leads to

t t
/0 |Ej2’2dt < const0 |AXgl?dt, j >0.

Finally, sincego = O(AX), we obtain

IE2|Ip < O(AX?).

It still must be shown that (52) holds. The inviscid condition for strict stabity+
o (Aj +12j]) <0 (see (42) and (51)), which impligs+ Ajxj = |1j]y/1+ (§/A))2>0,
leads directly to (52). The procedure to estimate the boundary error at an outflow boun
is exactly the same as in the inflow case. We can summarize the result in the follov
theorem.

THEOREM4. The approximatio30), (40), (41pfthe problen{13), (14), (15)s second-
order accurate if Theorerl holds and the first derivative operat® = P~1Q is given by
(48).

Remark. The procedure above (exemplified in the second-order accurate case) to
accuracy is general. The last step where one uses the Laplace transform technique to es
the boundary erroE? is not necessary (i) if the boundary stencils have the same orde
accuracy as the internal stencil, ires m, and (i) if the approximation of the mathematical
boundary conditions is one order more accurate,ri.e.m+ 1.

5.2. The Discrete Multiple Domain Problem

A finite difference approximation of the coupled problems (19) and (20) is

U+ ADLU = eXD?U + F + BTo+ P (o (U — Vo)
+0 (DLU)n — (DrV)0))eL
U = f
. . (53)
Vi + ADRV = e XDV + F + BTy + PR* (ox(Vo — Un)
+ o8 (DrV)o — (DLU)n))er
V(0) = f.

The characteristic variables in the left (subscript X9+ —1, x, = 0] and right (subscript
R) [Xo =0, xm = +1] domains ar&) andV, respectively, (see Fig. 18Ty, BT, denote the
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FIG. 1. The mesh close to the interfacexat 0.

boundary terms at = +1, respectively. Definitions ab, D2, A, X, e_1, e, are given in
(31), (32), (33),an@. =(0,,, )" ® I3, er=(1,,,0)" ® Is.

The values ob_; ando,; that lead to strict and strong stability for the discrete single
domain problem are given in Theorem 3. We must still determiher’, ot, o . Note
that the difference operator , DE, Dr, D"F} can be different in the left and right domains
and thatAx_ # AXg in general.

5.2.1. Conservation

To calculate the strength and speed of a shock with finite mesh size, one needs a
servative scheme. Let us start by considering a continuous problem in conservation f
ut + fx =0, |x] <1,t > 0. Integration over the domain leads to

d +1
a/l udx+ f+1— f_1=0;

i.e., the total change afin the domain is only due to the flux through the boundaries. Not
that integration offy over the the domain reverses the differentiation process and lea
information only at the boundaries.

Let F, DF denote the numerical approximations ffy. The discrete SBP derivative
satisfies

fu —Df =T, Df =P71Qf, Ta = O(AX). (54)

Multiplying (54) with the operatar P,wherd T =[1, 1, ..., 1]® |, (f hasp components)
and observing that, ; — f_; = ffll fy dx leads to

+1
ITPfxz/ f, dx + O(AX").
—1

The operatot" P is the discrete integration operator. This operator reverses the proces:
differentiation, leaves information only at the boundaries, and converges to the continu
integration operator aax — 0.

Remark. The linear continuous problem (13) considered in this paper does of course
produce any shocks. However, conservation is nevertheless a desirable property sinc
aim for a discrete approximation with the same behaviour as the linear continuous probl
which indeed is conservative. Moreover, it will be shown below (see the second Remar|
Section 5.2.2) that the conditions for conservation are a subset of the necessary condi
for stability.
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We will now prove the following theorem.

THEOREM5. The approximatiorf53) of the problen(13)is conservative if
a,{—a,&—K:O, otl—al\{—l—e)z:O, (55)

where the matrices. and X are given in(11).
Proof. Multiplying (53) with I P_ andI} P leads to

(ITPLU +1EPRV), = —(ILQUAU +1FQrAV) + ¢ (IT RLKU +1FRXV)
+ (0! —og)(Un — Vo) + (0 — o ) (DUn — DVp)
+2(U, F)p, +2(V, F)p, + BT'=0 (56)

i=m>
whereBT includes the boundary terms at=+1. To obtain (56) we have made use o
Lemma 1.

The inviscid terms can be written

ITQLAU +1XQrA = —(AU)o + (AU)n — (AV)o + (AV)n. (57)

Next, we consider the viscous terms. B&®Rk= QP~1Q andR= (—S"M + D)Slead to
ITQLP QXU 4+ 15 QrPRIQrXV = —(XDU)o + (XDU), — (XDV)g + (XDU ).
(58)

By inserting (57) and (58) into (56), neglecting the boundary terms=at-1, lettingF =0,
and applying condition (55), we obtailf P.U + 1% PrV); =0; i.e., the approximation (53)
is conservative m

5.2.2. Stability
We start with the following observation.

Remark. Stability of the one domain probleioes notimply stability of the multi-
ple domain problem. Stability means that the solution can be estimated in terms of
(bounded) boundary data. In a multiple domain problem, the boundary data are made
the solution(s) in the other domain(s). Boundedness of the data would require an a f
assumption.

The main result of this paper is given below.

THEOREM 6. The approximatior{53) of the problem(13) is both strictly and strongly
stable if

— 1 — — 1+ 0)?
=oeX, ol = (A peX —dla), ﬁ>ﬁ+(20:)

<

§>0, (59)

and if Theorem8 and5 hold.o ands are free parameters ang, , «g denote the minimal
eigenvalue of P if RQP~ 1Q and the minimal eigenvalue @ + MT)/2if R=(—STM+
D)S. The matrices\, X are given in(11).
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Proof. Strict and strong stability of (53) follows if the interface treatment at0 is of
a dissipative nature. For that reason we neglect the terms at the boundaries and use
F =0. The energy method leads to

%(nu 15 +IVI,) = -UT(AQL+ Q[A)U — VT (AQr + QRA)V
+eUT(XRL+ R X)U +eVT (XRe + REX)V
+2U] (0 (Up — Vo) + 0’ (DU, — DVp))
+2Vy (0f(Mo — Up) + o (DVo — DUy)). (60)

Equations (35), (36), and (37) lead to
~UT(AQL + Q[ A)U = UJ AUy — U] AU, (61)
~VT(AQr+ QRA)V = VJ AVo — VI AVn, (62)
UT(XR.+ Rl X)U < —2UgXDUg + 2Uy XDUy, — 20 DU XDU, (63)
VT (XRg + REX)V < —2VoXDVo + 2V XDVin — 20rDVy XDVo. (64)

By inserting (61)—(64) into (60) and neglecting boundary terms=at:1 we obtain

d
grUVIR +IVIE) = WTEW,

where
U, 20 — A —(o! +0ok) oY + eX —a
W Vo £ —(o! + o)) 20k + A —oy  op-— eX
DU, | o) +eX —oy —201 X 0
DVo —a oy —eX 0 —20Re X

The problem (53) is strictly and strongly stablekfis negative semidefiniteE is an
almost full matrix; to obtain explicit stability conditions, simplificationstbfire necessary.
The energy method applied to the continuous multiple domain problem leads to (23) wh
suggests that the variables

Un—Vo +l -1 0 O

. a Un + V. ~ I I 0 O
W:SW:i n+ Vo ’ S:i + +

V2| DU, =DV, V2 o 0 41—

DU, + DV 0 0 +I +I

are of interest. The use of these variables and the conservation conditions in Theore
leads to

220! =A) 0 25V +eX eX
eSS _ 0o 0 o o
20 +eX 0 —(aL+ar)eX (ar—aL)eX
exX 0 (xr-— oz._)e)z —(oL + aR)e)Z
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Remark. The first condition in Theorem 5 made the elemdifts);o = (E;1)21 equal to
zero. The second condition in Theorem 5 canceled the eleniBniss = (E1)3». These
conservation conditions are necessary in order to obtain negative semidefinitress «
since(Ey),s is zero.

To show thatk; is negative semidefinite, introduce the first condition in (59). Secor
add and subtract the matribx28e X to the upper left block iE;. The condition for negative
semidefiniteness becomes

V1 (2(20) — A) +2BeX)y1+€[(Y® Ry [Ae, ® B][(Y® RTy2] <0, (65)

whereB=R"XR, Ag, = YTE,Y, and

—28 1+ 20) 1
Eo=| 1+20) —(aL+ar) ar—aL
1 ar—oaL  —(oL +aRr)

The first term in (65) is nonpositive if the second relation in (59) holds. Negative defin
ness that implieg\ g, < 0 is obtained if the third relation in (59) holds

5.2.3. Accuracy

Inthis section we will consider the accuracy close to the interface. The procedureis sir
to the one used in Section 5.1.2 for the single domain problem. The problem describin
deviationdJ ; = U (xj, t) —U; () andV; = V(x;, t) — V; (t) between the exact continuous
solutions and the discrete approximations given by (53) is

Ui+ ADLU = eXDZU + TL + Pt o (Un — Vo) + 0 (DLU)n — (DRrV)0) e
U =0;

) ) (66)
Vi + ADRV = e XDV + Tr + Pr*[0h(Vo — Up) + ox (DRrV)o — (DLU)n)|er

V(0) =0.

For simplicity, we have used the notatibh=U andV = V. Note also that the terms at
the boundariex = +1 are neglected. The treatment at the boundatiest1 has been
discussed in Section 5.1.2.

T_ andTg are the truncation errors from the approximation of the differential opera
and the interface conditions. The truncation errors have the general structure

: O(axdY)
TL=| OAX) |. Tr=| O(axg)
o(ax™?)

The discussion in Section 5.1.2 on the size of the truncation error is applicable also fo
interface problem.

Following the procedure in Section 5.1.2, one splits up the errors in two parts: the
part(TZ, T3) contains the truncation error of the internal scheme; the second part conta
boundary contributionTLz, T,%)With one order lower accuracy. The structure of these errg
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are
T'=|oax") |, T2= 0 ,
0 O(ax™ V)
0 o(axg™)
Ta= [ O(axR) |, T2= 0

Also the error is divided into two parts; i.e., we consitlet=U! + U? andV =V?! 4 V2,

By using the energy method,! andV?! will be bounded byT ! andT3. This procedure
is straightforward, entirely similar to the one in Section 5.1.2, and will therefore not |
repeated here. Suffice it to say that the stability conditions given in Theorem 6 lead to

IUMle, + IV P, < O(AX]) + O(AXE).

To boundU? andV?2 in terms ofT? andT2 requires use of the Laplace transform technique
That analysis is given in detail below.

Also in this case, we keep the algebraic complexity down by considering the invis
(e =0) Euler equations with the first derrivative approximated with (48). The problem ft
U?2=U andV?=V obtained by Laplace-transforming (66) becomes

§Un+ AU, —Up 1) = 20/ (Uy — Vo) + Ax 8L
& Vo + A(V1 — Vo) = 204(Mo — Up) + AxrOr
5U0;+A0j1-Uj)/2=0, j<n-1,
&V + ANV 1 -V, 1)/2=0, j=>1,

Uj—>0, j = —o0,

(67)

\7j—>0, j — o0,

whered, =sAx, , 3r =SAxg, L = O(Ax"), andgr = O(AXT ).

The last four equations in (67) lead to

1 . 0 ‘ 0 _
R T T e I L
0 0 1
1 . 0 . 0 '
Vi=ok| 0|(kR) +03| 1 |(kB) +o3[ 0] (xd)". (69)
0 0 1
. —(§|_/)»J')— \/1+(§/)»j)2, )»J' > 0,
Kkl =140 A =0, (70)

—(§|_/)»j)+\/1+(§/)\j)2, Aj <0
—(QR/kj)+\/1+(§/Aj)2, Aj >0,

Kk =10, A =0, (71)

—(Br/Aj) — 1+ (B/2))% Aj <0,
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where the branch of the square root is the one with a positive real part {8y R8. Also
in this case}; =0 presents no problem, only the number of equations in (30) is reduc
We assume.; # 0 in the following.

The coefficientsr, = (o, 02, o)T andor = (o, 03, )T will be determined by the
first two equations in (67). They, together with the first condition in Theorem 5, lead to

Ax 6
E(§L,§R)<UL> = ( XL(‘?L),
OR AXrOR

_ _ (72)
§|_|3—AK|__1—|-A—20’|1 20/ >

E(SL, Sr) = | = . - - |
Z(O'L —A) SR|3+AKR+A—20L

wherex| =diagk, k2, k) andig = diag(cy, 3, k3).
A nonsingularE (5., 3r) leads via the Kreiss condition and Parseval’s relation (see St
tion 5.1.2) to the estimate

IUZ)lp. < O(AXE) + O(AX3), [IVZ]p, < O(AXE) + O(AX3).

It still must be shown that (52) fdE, defined in (72), holds. A direct calculation using
(72), (70), and (71) leads to

3
Det(E) = [ G;.
j=1

Gj = 1P (14 /L4 GL/a2\ 1+ Gr/ip?) + 111y 1+ GL/a?y/1+ Gr/ap )2

Let \/1+ (BL/Aj)?=nL +i& and/1+ (Sr/1j)?>=nr + i&r, Wheren, nr are non-

negative. A simple algebraic test reveals that the imaginary part and the real (@t o
cannot be zero at the same time if the inviscid condition for stability- 20 <0 in
Theorem 6 holds. We can summarize the result in the following theorem.

THEOREM 7. The approximatior(53) of the problem(13) with ¢ =0 is second-order
accurate i.e.,

Ul + IV llp, < O(AXE) + O(AXR),

if Theoremb holds and the first derivative operat®r= P~1Q is given by(48).

Remark. Also in the interface case (see Section 5.1.2) the procedure to prove accul
which was exemplified above in the second-order accurate case, is general. The las
in which one uses the Laplace transform technique to estimate the ¥farsdV? is not
necessary (i) if the stencils adjacent to the interface have the same order of accuracy
internal stencil, and (ii) if the interface conditions are one order more accurate.

5.2.4. The Discrete Multiple Domain Problem in Conservation Form

The discrete multiple domain problem (53) can be transformed to conservative forn

multiplying the equations with, .1 ® T(RS) ™, Ine1 ® T(RS) ™1, respectively. The result
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Ui+ PCY(QLF' —eRLFY)

=+Q/2P[(Ff - F}) + L+ 20)e(FY — Fy) — FP]
Vi + PR (QrF' — eRRFY)

=—(1/2P [(FR — F) — (1 +20)e(Fy — FY) + FR].

(73)

whereFT =F'! —¢FV and
FB = (813+€BTBT 1) (Un — Vo), FE = (813+€BTBT 1) (Vo — Up).

In (73), the forcing terms and the boundary conditions #t1 are neglected.

6. NUMERICAL EXPERIMENTS

By making one-dimensional computations using the nonlinear Euler and Navier-Sto
equations, we can check whether the theoretical conclusions drawn from the analysis o
constant coefficient problem agree with the results obtained in practice.

In the calculations below, we use the second-, fourth-, and sixth-order schemes repc
in [24]. To integrate in time, a five-stage fourth-order RK scheme [33] has been us
Consider the stability condition (59). In the calculations below we havedsed 1/2 and
the conservative estimatg = A/2— 81, wheres is determined through tests. Often we
uses = 1.0. Equation (55) has been used to determine the other parameters.

First, we consider a sound propagation problem. The computational results, obtai
using the nonlinear Euler equations at Mach number 0.5, are compared with an exact solt
of the linearized problem. In Fig. 2, the errors for the second-, fourth-, and sixth-orc
schemes using one domain (1Dom), four uniform domains (4Dom), and eight randot
spaced domains (Rand) are shown. Clearly, the order of accuracy is independent o
presence and location of the interfaces. Due to the small amplitediEs ') used in the
sixth-order cases, we encounter roundoff, which can be seen as the kink on the sixth-c
results.

Next, we consider aviscous shock propagation problem at Mach number 2.0 and Reyn
number 150. The exact solution of the Navier—Stokes equation for this case can be four
[34]. In Fig. 3, the errors for second-, fourth-, and sixth-order schemes using eight unifc
domains (Unif) and eight randomly spaced domains (NonU) are shown. Also in this ce
the order of accuracy is independent of the location of the interfaces.

The curves in the sixth-order case are not straight (see Fig. 3). The reason for this is
the curves are formed as a mean value of 15 simulations, where different wave spgeds
ranging from—0.25to 0.5 are used. The individual results for each wave speed vary sligh
and lead to the nonstraight lines. Note that the trends are identical between the nonuni
and uniform cases.

In Fig. 4, the propagating shockvé=0.25) for four different times is shown. In this
case, the sixth-order scheme and 24 gridpoints were used in each domain.

Finally, we will discuss two additional questions concerning accuracy and stabilit
efficiency. The influence of interface conditions on accuracy is illustrated in Table I. T
calculations are run to a physical tinfe=3 at Mach number 2.0 and Reynolds numbel
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FIG. 4. Viscous shock propagation. A domain with randomly spaced interfaces.

Re=250. The sixth-order SBP scheme is used, and the number of total points is 289 ev
distributed on the interval1/2 < x < 1. The parameter in the study is the number of sub
domains, keeping the total number of points constant. The number of subdomains ral
from 1 to 24. With 24 subdomains, the spatial operator involves 12 boundary stencils (fi
order) and one sixth-order interior stencil. No further divisions are possible when using
sixth-order SBP operator. Note that this case is only marginally less accurate than the si
domain case, for which the most points are discretized with sixth-order stencils.

The previous study indicates that there is little loss of accuracy when subdividing
domain. There are, however, other costs associated with domain subdivision. Introduc

TABLE |
Variation of L, Error on the
Number of Subdomains with
Grid Density Constant

Subdomains LOG error
1 —4.527
2 —4.584
4 —4.457
8 —4.643
12 —4.313
16 —4.467
18 —4.342

24 —4.358
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TABLE Il
Variation of CFL Number and L, Error with Reynolds Number
for Single and Multiple Domain Cases

Re LOG, error CFlimax LOG, error CFlimax
1000 —2.154 0.55 DNC
900 —2.242 0.55 —2.265 0.30
800 —2.347 0.55 —2.376 0.30
700 —2.477 0.60 —2.517 0.30
600 —-2.637 0.60 —2.698 0.30
500 —-2.841 0.60 —2.935 0.30
300 —-3.429 0.65 —-3.617 0.30
200 —4.027 0.65 —4.185 0.35
100 —5.741 0.60 —5.699 0.35
40 —7.892 0.50 —-7.331 0.20
20 —9.535 0.45 —8.637 0.20
10 —10.968 0.40 —10.665 0.18

Note.DNC is short for “did not converge.”

of additional interfaces into the domain changes the resulting eigenspectrum of the s
discrete operator. In [22], a reduction in the effective CFL, when using a penalty bounc
procedure, was observed. We experience a similar reduction in the stability envelop a
number of subdomains is increased.

In Table Il, a study compares the effective CFL of a single domain calculation, w
those from a comparable grid divided into eight subdomains. Plotted are the errors an
maximum stable CFL as a function of the Reynolds numbers for the two cases. Note
while the errors are nearly equivalent for the two test cases, the maximum CFL for
single domain case is nearly a factor of 2 larger.

In practice, using more than eight subdomains does not further reduce the effel
CFL. Specifically, a gradual decrease in CFL is observed until an asymptotic valu
achieved at approximately eight subdomains. The two test cases used in this study (or
eight domains) represent the limits of stability experienced in practice. Work continue
eliminate this reduction in CFL, although acceptable efficiency is achieved with the met
in its current form.

7. SUMMARY AND CONCLUSIONS

We have analyzed boundary conditions and interface conditions for the one-dimensi
Euler and Navier-Stokes equations. Both the continuous and semidiscrete problems
been considered.

We have considered summation-by-parts operators and derived strictly and strongly s
boundary and interface conditions for the Euler and Navier—Stokes equations. We have
considered the question of accuracy, both in the general case and more specifically
second-order accurate approximation of the Euler equations.

The interface conditions are stable and conservative even if the finite difference oper
and mesh sizes vary from domain to domain. Numerical experiments which include a st
propagating problem and a viscous shock propagating problem show that the new cond
lead to accurate and stable results for the corresponding nonlinear problems also.
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It was also shown by numerical experiments that there is little loss of accuracy associ

with domain subdivision. However, the introduction of interfaces into the domain chang
the eigenspectrum of the semidiscrete operator and caused a reduction of the CFL nul
by approximately a factor of 2.
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