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Boundary and interface conditions for high-order finite difference methods ap-
plied to the constant coefficient Euler and Navier–Stokes equations are derived. The
boundary conditions lead to strict and strong stability. The interface conditions are
stable and conservative even if the finite difference operators and mesh sizes vary
from domain to domain. Numerical experiments show that the new conditions also
lead to good results for the corresponding nonlinear problems.c© 1999 Academic Press

1. INTRODUCTION

In many computational problems, low-order finite difference methods (second order
or less) are not accurate enough. Examples in which high-frequency components in the
solution must be resolved by using high-order finite difference methods (HOFDM) include
aeroacoustics, turbulence, and transition simulations, the propagation and scattering of
electromagnetic waves, and simulation of reactive flows at high speeds [1, 6]. The efficiency
[7] of HOFDM can be used either to increase the accuracy for a fixed number of mesh points
or to reduce the computational cost for a given accuracy by reducing the number of mesh
points.

The main reason that low-order finite difference methods are used in practical calculations
is because of the difficulty that arises for HOFDM near the boundaries of the computational
domain. On a Cartesian mesh, it is quite easy to derive nonsymmetric boundary operators that
have high formal accuracy; the difficulty is to derive highly accurateandstable operators. In
[8, 9] HOFDM are constructed based on the work in [10, 11]. In these strictly stable schemes,
the growth rates of the analytic and semidiscrete solution are identical. Strict stability is
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obtained by constructing discrete operators that satisfy a summation-by-parts (SBP) rule
which mimics the integration-by-parts rule in the continuous case. For calculations over
long times, strict stability is very important because it prevents error growth in time for
fixed1x.

In [12] it was shown that many G-K-S stable [13] (convergence to true true solution as
1x → 0) scalar schemes were not strictly stable. Moreover, many scalar schemes that were
both G-K-S stable and strictly stable exhibit time growth when they are applied to systems
of equations. The underlying reason for the error growth in time is caused by the way the
mathematical boundary conditions were imposed. An orthogonal projection operator is used
to impose the mathematical boundary conditions in [14, 15]. In the so-called SAT (simulta-
neous approximation term) procedure [16], a linear combination of the boundary conditions
in the form of a forcing function and the differential equations is solved near the boundary.
Both these methods impose the correct boundary conditions and preserve strict stability.

Another important concept is strong stability. An approximation is strongly stable if the
solution, including the values at the boundary points, can be estimated in terms of all data
in the problem [17]. The stability estimate in the strongly stable case leads directly to the
error estimate if no extra or numerical boundary conditions are necessary. Stability analysis
using the Laplace transform technique leads to strong stability if the Kreiss condition is
satisfied; see [18, 9, paper IV]. Note that strict stability leads to strong stability, but strong
stability does not imply strict stability.

Most investigations regarding HOFDM are done on linear hyperbolic model equations
with constant coefficients on a uniform mesh. However, nonlinear Navier–Stokes calcu-
lations on nonuniform meshes have been performed [19]. One of the conclusions in [19]
was that the treatment of the metric derivatives is a crucial point for nonsmooth meshes.
This problem is analyzed in [20], where so-called mimetic difference operators (discrete
operators with the same symmetry properties as the continuous operators) are derived. In
[15], strict stability for parabolic and hyperbolic systems in curvilinear coordinates on a
single domain were investigated.

Generating a smooth grid around a complex configuration can be very difficult, if not
impossible, and is often the most time-consuming aspect of the solution procedure. This
fact has limited the use of HOFDM in practical calculations to the small class of simple
geometries which can be smoothly mapped onto the unit cube. In this paper we consider a
structured multiblock approach in which each subdomain is discretized by using a discrete
operator with the SBP property. The subdomains are patched together to a global domain
by using suitable interface conditions. This technique was used in [21–23] for Chebyshev
spectral methods.

In [24], stable and conservative interface conditions for HOFDM applied to the scalar
advection–diffusion equation on multiple domains were derived. In each subdomain the step
size was constant but significantly different from that in the adjacent subdomains. Also,
the finite difference operators could vary from subdomain to subdomain. In this paper we
will generalize the results in [24] and extend the analysis to the one-dimensional constant
coefficient Euler and Navier–Stokes equations.

The rest of this paper will proceed as follows. In Section 2, some basic definitions are
given. In Section 3, the Navier–Stokes equations in conservative, primitive, and charac-
teristic variable form are given. In Section 4, the continuous problem is analyzed, while
the discrete problem is investigated in Section 5. Numerical experiments are performed in
Section 6 and we summarize and draw conclusions in Section 7.
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2. DEFINITIONS

Consider the linear initial boundary value problem

wt = Pw + δF(x, t), x ∈ Ä; t ≥ 0,

w = δ f (x), x ∈ Ä; t = 0,

LCw = δg(t), x ∈ 0; t ≥ 0,

(1)

whereP is the differential operator andLC is the boundary operator. The initial functionδ f ,
the forcing functionδF , and the boundary dataδg are the data of the problem;w denotes the
difference between a solution with dataf, F, g and one with dataf + δ f, F + δF, g+ δg.

There are many concepts of well posedness (see [17]). Here we consider the following
definition.

DEFINITION 1. The problem (1) is strongly well posed if the solutionw is unique, exists,
and satisfies

‖w‖2
Ä +

∫ t

0
‖w‖2

0 dt ≤ Kc eηct

{
‖δ f ‖2

Ä +
∫ t

0

(‖δF‖2
Ä + ‖δg‖2

0

)
dt

}
, (2)

whereKc andηc may not depend onδF, δ f, δg. ‖ · ‖Ä and‖ · ‖0 are suitable continuous
norms.

The semidiscrete version of (1) is

(w j )t = Qw j + δFj (t), xj ∈ Ä; t ≥ 0,

w j = δ f j , xj ∈ Ä; t = 0,

L Dw j = δg(t), xj ∈ 0; t ≥ 0,

, (3)

whereQ is the difference operator approximating the differential operatorP, δFj is the
forcing function,δ f j is the initial function,L D is the discrete boundary operator, where
numerical boundary conditions are included, andδg is the boundary data. It is assumed that
(3) is a consistent approximation of (1).

Closely related to the concept of well posedness is the concept of stability.

DEFINITION 2. The problem (3) is strongly stable, if for a sufficiently fine mesh, the
solutionw j satisfies

‖w‖2
Ä +

∫ t

0
‖w‖2

0 dt ≤ Kd eηdt

{
‖δ f ‖2

Ä +
∫ t

0

(‖δF‖2
Ä + ‖δg‖2

0

)
dt

}
, (4)

whereKd andηd may not depend onδFj , δ f j , δg. ‖ · ‖Ä and‖ · ‖0 are suitable discrete
norms.

DEFINITION 3. The approximation (3) of (1) is strictly stable if the analytical and discrete
growth rates (see (2) and (4)) satisfy

ηd ≤ ηc +O(1x), (5)

where1x is the mesh size.

For later reference we also define some useful matrix operations; see [25].
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DEFINITION 4. Let A be ap× q matrix and letB be anm× n matrix, then

A ⊗ B =

 a0,0B · · · a0,q−1B
...

...

ap−1,0B · · · ap−1,q−1B

 .

The p× q block matrixA⊗ B is called a Kronecker product.

There are a number of rules for Kronecker products (see [25]). In this paper we will make
use of

(A ⊗ B)(C ⊗ D) = (AC) ⊗ (B D), (A ⊗ B)T = AT ⊗ BT. (6)

The following lemma will be used frequently below; it is a direct consequence of the first
rule in (6).

LEMMA 1. Let A be an m× m matrix, let B be an n× n matrix, let Ã= In ⊗ A, and let
B̃ = B ⊗ Im; thenÃB̃ = B̃ Ã.

3. THE EULER AND NAVIER–STOKES EQUATIONS

The one-dimensional constant coefficient Navier–Stokes equations in primitive (W),
characteristic (C), and conservative (Q) variable form are

Wt + ĀWx = ε B̄Wxx, Ct + 3̄Cx = ε X̄Cxx, Qt + F I
x = εFV

x , (7)

respectively. Withε = 0, Eq. (7) becomes the one-dimensional constant coefficient Euler
equations. The overbar is used to denote variables with a constant state. The relation between
W, C, Q, whereW = (ρ, u, T)T is

C = R̄S̄W, Q = T̄ W, (8)

where

R̄ =


−1/

√
2γ 1/

√
2 −√

(γ − 1)/2γ
√

(γ − 1)/γ 0 −1/
√

γ

1/
√

2γ 1/
√

2
√

(γ − 1)/2γ

 ,

S̄ =
√

2

 c̄2/
√

γ 0 0

0 ρ̄c̄ 0

0 0 ρ̄
/√

γ (γ − 1)M4∞

 ,

T̄ =

 1 0 0
ū ρ̄ 0

c̄2/(γ (γ − 1)) + ū2/2 ρ̄ ū ρ̄
/(

γ (γ − 1)M2
∞
)
 .

Note thatR̄R̄T = I3.
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The transformation (8) implies that the matrices and fluxes in (7) are

Ā =

 ū ρ̄ 0

c̄2/γ ρ̄ ū 1/γ M2
∞

0 (γ − 1)c̄2M2
∞ ū

 , (9)

B̄ =

0 0 0

0 (λ̄ + 2µ̄)/ρ̄ 0

0 0 γ κ̄/(Pr ρ̄)

 , (10)

3̄ =
 ū − c̄ 0 0

0 ū 0
0 ū + c̄

 , X̄ = 1

2

 θ̃ + φ̃ αφ̃ θ̃ − φ̃

αφ̃ α2φ̃ −αφ̃

θ̃ − φ̃ −αφ̃ θ̃ + φ̃

 , (11)

F I = T̄ ĀW = T̄ ĀT̄−1Q, FV = T̄ B̄Wx = T̄ B̄T̄−1Qx. (12)

The dependent variables and parametersρ, u, T, p, c, M∞, µ, λ, κ, Pr, γ , andε are re-
spectively the density,x, y, z components of the velocity, the temperature, the pressure, the
speed of sound, the free-stream Mach number, the shear, and second viscosity, the coefficient
of heat conduction, the Prandtl number, the ratio of specific heats, and the inverse Reynolds
number. The notations̃θ = (λ̄ + 2µ̄)/ρ̄, φ̃ = (γ − 1)κ̄/(Prρ̄), α = √

2/(γ − 1) have also
been introduced.

4. THE CONTINUOUS PROBLEM

In this paper we will consider interface conditions between subdomains. However, in-
terface conditions are closely related to boundary conditions; therefore, we start with the
single domain problem.

4.1. The Continuous Single Domain Problem

To make the presentation self-contained, some results in [27] are included in this section.
Consider the Navier–Stokes equations on characteristic form,

Ct + 3̄Cx = ε X̄Cxx + F(x, t), t ≥ 0; −1 ≤ x ≤ 1,

C = f (x), t = 0; −1 ≤ x ≤ 1,

L−1C = g−1(t), t ≥ 0; x = −1,

L+1C = g+1(t), t ≥ 0; x = +1,

(13)

whereC = (ρ̄c̄u− p, α(ρc̄2 − p), ρ̄c̄u+ p)T, 0< ε ¿ 1, andL−1, L+1 are the boundary
operators. For̄u > 0, there is inflow atx = −1 and outflow atx = 1.

4.1.1. Well Posedness

Let

(U, V) =
∫ +1

−1
UTV dx, (U,U ) = ‖U‖2, ‖U‖2

0 = |U |2x=−1 + |U |2x=+1
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denote theL2 scalar product, theL2 norm, and the boundary norm, respectively. The
boundary conditions (see [27, 22]),

L−1C = (3̄ + |3̄|)
2

C − ε X̄Cx = g−1, (14)

L+1C =
{

(3̄ − |3̄|)
2

C − ε X̄Cx

}
i

= {g+1}i , i = 1, 2, (15)

and the energy method applied to (13) leads to

‖C‖2
t = −2ε(Cx, X̄Cx) + 2(C, F) − [CT3I C − 2CTg−1

]
x=−1

− [CT3OC + 2CTg+1
]

x=+1. (16)

In (14)–(16),g+1 = (g1, g2, g1 − (2/α)g2)
T, |3̄| = diag(|λ1|, |λ2|, |λ3|), and

3I = |3̄|, 3O =

 |λ1| 0 (|λ1| − λ1)/2

0 |λ2| 0

(|λ1| − λ1)/2 0 |λ3|

 . (17)

Integration of (16) leads to

‖C‖2 + eηT

{
2ε

∫ T

0
(Cx, X̄Cx)e

−ηt dt + δ

2

∫ T

0
‖C‖2

0 e−ηt dt

}
≤ eηT

{
‖ f ‖2 + 2

δ

∫ T

0
‖g‖2

0 e−ηt dt + 1

η

∫ T

0
‖F‖2 e−ηt dt

}
, (18)

where 0< η < 1, δ = min|dj |, D = |3̄|H , and

H = diag(H1, 1, H3), H1 = |λ3| − |λ1|
|λ3| + |λ3| , H3 = |λ3| − |λ1|

|λ3| + |λ1| .

Note that (14), (15) reduce to the characteristic boundary conditions for the Euler equations
asε → 0.

Uniqueness follows directly from the estimate (18). Existence can be shown by using the
Laplace-transform technique or via difference approximations; see [26, 28]. Since (18) is
of the form (2), we can conclude that the following theorem holds.

THEOREM1. The problem(13), (14), (15)is strongly well posed.

4.2. The Continuous Multiple Domain Problem

In this section we split the domain [−1, 1] into [−1, 0] and [0, 1] and focus on the
interface problem atx = 0. The two coupled problems are

Ut + 3̄Ux = ε X̄Uxx + F(x, t), t ≥ 0; −1 ≤ x ≤ 0,

U = f (x), t = 0; −1 ≤ x ≤ 0,

L−1U = g−1(t), t ≥ 0; x = −1,

L0(U − V) = 0, t ≥ 0; x = 0;

(19)
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Vt + 3̄Vx = ε X̄Vxx + F(x, t), t ≥ 0; 0 ≤ x ≤ +1,

V = f (x), t = 0; 0 ≤ x ≤ +1,

L0(V − U ) = 0, t ≥ 0; x = 0,

L+1V = g+1(t), t ≥ 0; x = +1,

(20)

respectively. The characteristic variables in the left [−1, 0] and right [0,+1] domain areU
andV , respectively. The coupling between (19) and (20) is given by the operatorL0.

By subtracting (13) from (19)–(20), by transforming the problem on [0,+1] onto
[−1, 0] via the transformationx → −ξ , and finally by replacingξ with x, we obtain

ψt + 3̃ψx = ε X̃ψxx, t ≥ 0; −1 ≤ x ≤ 0,

ψ = 0, t = 0; −1 ≤ x ≤ 0,

L−1Ũ = 0, t ≥ 0; x = −1,

L̃+1Ṽ = 0, t ≥ 0; x = −1,

L̃0(Ũ − Ṽ) = 0, t ≥ 0; x = 0,

(21)

where

ψ =
(

Ũ

Ṽ

)
=
(

U − C

V − C

)
, 3̃ =

(+3̄ 0
0 −3̄

)
, X̃ =

(
X̄ 0
0 X̄

)
,

and

L−1Ũ = (3̄ + |3̄|)
2

Ũ − ε X̄Ũ x, L̃+1Ṽ =
{

(3̄ − |3̄|)
2

Ṽ + ε X̄Ṽ x

}
i

, i = 1, 2. (22)

4.2.1. Well Posedness

The energy method applied to (21) leads to

‖ψ‖2
t = [ψT3̃ψ − 2εψT X̃ψx

]x=−1
x=0 − 2ε(ψx, X̃ψx).

The analysis of the single domain problem implies that the boundary terms atx = −1 are
negative semidefinite with the boundary operators (22). At the interfacex = 0, we have[

ψT3̃ψ − 2εψT X̃ψx
]

x=0

= 1

2


Ũ − Ṽ

Ũ + Ṽ

(Ũ − Ṽ)x

(Ũ + Ṽ)x




0 3̄ −ε X̄ 0

3̄ 0 0 −ε X̄

−ε X̄ 0 0 0

0 −ε X̄ 0 0




Ũ − Ṽ

Ũ + Ṽ

(Ũ − Ṽ)x

(Ũ + Ṽ)x

 . (23)

Well posedness for the Euler equations (ε = 0) requiresŨ − Ṽ = 0 since3̄ is nonsingular.
With that choice we get[

ψT3̃ψ − 2εψT X̃ψx
]

x=0 = −2εŨ
T
X̄(Ũ + Ṽ)x = −2ε((R̄S̄)TŨ )T B̄(W1 + W2)x,

where(R̄S̄)−1U = WL , (R̄S̄)−1V = WR denotes the primitive variables in the left and right
domain, respectively. The structure of̄B (see (10)) and a transformation to the original
coordinate system lead to the following theorem.
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THEOREM2. If theorem1 holds and the interface conditions(
I3

εD1

)(
U − V

(U − V)x

)
= 0, D1 =

(
1 0 1
1 α −1

)
(24)

are used, then(19)and(20)are strongly well posed.

Remark. The problems (19) and (20) are strongly well posed in the sense that the
solutions can be estimated in terms of the data in the corresponding one domain problem
(13).

Remark. The condition (24) in primitive variable formulation is(
I3

εD2

)(
WL − WR

(WL − WR)x

)
= 0, D2 =

(
0 1 0
0 0 1

)
.

5. THE DISCRETE PROBLEM

Let U,DU be the numerical approximations of the scalar quantitiesu andux, respect-
ively. The approximationDU of the first derivative

DU = P−1QU, Pux − Qu = PTe1, |Te1| = O(1xm, 1xn)

satisfies the SBP rule,

(U,DV)P = UN VN − U0V0 − (DU, V)P, (25)

where

(U, V)P = UT PV, P = PT, Q + QT = D, D = diag[−1, 0, . . . , 0, 1] (26)

and 0< pmin1x I ≤ P ≤ pmax1x I . Operators of the SBP type arise naturally with centered
difference approximations, for example, see [11, 29, 12, 30].

The second derivative can be obtained by applying the first derivative operator twice.
Such an approximation satisfies the SBP rule (25) exactly. However, there are drawbacks
with such a procedure. A second derivative formed in that way is unnecessarily wide and
inaccurate and can lead to odd–even mode decoupling. A second derivative operator with
the properties

D2U = P−1RU, Puxx − Ru = PTe2, Te2 = O(1xm, 1xn), (27)

R = (−STM + D)S, (28)

was suggested in [24]. The matrixD is given in (26);M is positive definite, i.e.,UTMU > 0
and 0< mmin1x I ≤ M ≤ mmax1x I .

S is a diagonal matrix with a discrete representation of the first derivative on the first and
last rows,

{Su}0 = {Du}0 = ux(x0, t) + Te3, {Su}n = {Du}n = ux(xn, t) + Te3,
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where|Te3| =O(1xr ) and

S = 1

1x



s00 s01 s02 s03 · · ·
0 1 0

0 1 0
. . .

. . .
. . .

0 1 0
0 1 0

· · · snn−3 snn−2 snn−1 snn


.

The second derivative defined in (27) and (28) satisfies a modified SBP rule. We have

(U,D2V)P = Un{DV}n − U0{DV}0 − (SU)TM(SV).

The notation|Te1|, |Te2| =O(1xm, 1xn) and |Te3| =O(1xr ) means that the approxi-
mation of the differential operator is accurate to orderm in the interior of the domain, to
ordern at the boundary, and that the approximation of the boundary conditions is accurate
to orderr . The relation between the different orders of accuracy, i.e.,m, n, r , is discussed
in Section 5.1.2 below.

So far we have considered difference approximations of scalar quantities. The corre-
sponding approximations for vector quantities are defined by using Kronecker products
(see Definition 4). The spatial operatorsD,D2 and the matrices that define them are of the
form B ⊗ I3 in this paper. As an example,P−1Q means(P−1 ⊗ I3)(Q ⊗ I3) = P−1Q ⊗ I3.
In the sequel, that notation is implied.

Let H = HT > 0; for later reference we introduce the notations

(U, V)H = UT HV, (U,U )H = ‖U‖2
H , ‖U‖2

0D
= |U |2i =0 + |U |2i =n. (29)

5.1. The Discrete Single Domain Problem

We introduce a uniform meshxi = −1+ i 1x, x0 = −1, xn = +1. The finite difference
approximation of (13) with the SAT technique [16] for boundary conditions is

Ct + 3̃DC = ε X̃D2C + F + P−1
[
σ−1
(
L D

−1C − g−1
)
e−1 +σ+1

(
L D

+1C − g+1
)
e+1
]
,

(30)
C(0) = f,

where

D = P−1Q ⊗ I3, D2 = P−1R ⊗ I3, (31)

R = Q P−1Q ⊗ I3, or R = (−ST M + D)S⊗ I3, (32)

3̃ = In ⊗ 3̄, X̃ = In ⊗ X̄, e−1 = (1, . . . , 0)T ⊗ I3, e+1 = (0, . . . , 1)T ⊗ I3. (33)

The unknown diagonal matricesσ−1 andσ+1 will be determined below.
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5.1.1. Stability

The energy method leads to

d

dt
‖C‖2

P = −CT(3̃Q + QT3̃)C + εCT(X̃ R+ RT X̃)C + 2(C, F)P

+ 2CT
0 σ−1

[
L D

−1C − g−1
]+ 2CT

Nσ+1
[
L D

+1C − g+1
]
. (34)

The definition of the first derivative operatorP−1Q and Lemma 1 leads to

−CT(3̃Q + QT3̃)C = CT
0 3̄C0 − CT

n 3̄Cn. (35)

The definition of the second derivative operatorsR= (−STM + D)S and R= Q P−1Q
yields

CT(X̃ R+ RT X̃)C = −2C0X̄DC0 + 2Cn X̄DCn − (SC)T
(
X̃ M + (X̃ M)T

)
(SC) (36)

CT(X̃ R+ RT X̃)C = −2C0X̄DC0 + 2Cn X̄DCn − 2(P−1QC)T PX̃ P−1QC, (37)

respectively.
By introducing (35), (36), and (37) into (34) we get

d

dt
‖C‖2

P + 2ε(DC, X̃DC)H = [CT3̄C − 2εCT X̄DC] i =0
i =n + 2(C, F)P

+ 2CT
0 σ−1

[
L D

−1C − g−1
]+ 2CT

Nσ+1
[
L D

+1C − g+1
]
, (38)

where the scalar products and norms are defined in (29).
The boundary operatorsL D

−1, L D
+1 are the discrete versions of (14)–(15), with one impor-

tant modification. In [27] it is shown that the two outflow conditions in (15) determine the
value of the last row of̄XCx in terms of the in-going characteristic variable and boundary
data; i.e., (15) implies that

{−ε X̄Cx}3 = −λ1 − |λ1|
2

C1 + g1 − (2/α)g2, x = +1. (39)

To explicitly incorporate (39) into (30) we use

L D
−1C =

{
(3̄ + |3̄|)

2
C − ε X̄DC

}
i =0

= g−1, (40)

L D
+1C =

{
(3̄ − |3̄|)

2
C − ε X̄DC

}
i =n

= g+1, (41)

where(g+1)3 is equal to the right-hand side of (39). The boundary conditions (40), (41)
inserted in (38) yield

d

dt
‖C‖2

P = −2ε(DC, X̃DC)H + 2(C, F)P + {CT[+3̄ + σ−1(3̄ + |3̄|)]C}i =0

+{CT[−2ε X̄ − 2εσ−1X̄]DC
}

i =0 + {CT[−3̄ + σ+1(3̄ − |3̄|)]C}
i =n

+{CT[+2ε X̄ − 2εσ+1X̄]DC
}

i =n + {σ 3
+1C1C3(λ̄1 − |λ̄1|)

}
i =n

+ 2CT
0 g−1 − 2CT

n g+1. (42)



             

BOUNDARY AND INTERFACE CONDITIONS 631

The choiceσ−1 = −I3 andσ+1 = I3 leads to

‖C‖2
t = −2ε(DC, X̃DC)H + 2(C, F)P − [CT3I C − 2CTg−1

]
i =0

−[CT3OC + 2CTg+1
]

i =n
, (43)

i.e., a growth rate which is exactly the same as in the continuous case (compare (43) with
(16)). The definitions of3I , 3O are given in (17). Integration of (43) leads to

‖C‖2
P + eηD T

{
2ε

∫ T

0
(DC, X̃DC)H e−ηDt dt + δD

2

∫ T

0
‖C‖2

0D
e−ηDt dt

}
≤ eηD T

{
‖ f ‖2

P + 2

δD

∫ T

0
‖g‖2

0D
e−ηDt dt + 1

ηD

∫ T

0
‖F‖2

P e−ηDt dt

}
. (44)

The estimate (44) is similar to (4) and hence (30) is a strongly stable approximation. The
problem (30) is also strictly stable (we can chooseηD = η andδD = δ; see (18), (5)). We
can summarize the result in the following way.

THEOREM3. The approximation(30), (40), (41)of the problem(13), (14), (15)is both
strictly and strongly stable ifσ−1 = −I3 andσ+1 = I3.

5.1.2. Accuracy

The problem describing the deviationEj = C(xj , t) − Cj (t) between the exact continu-
ous solution and the discrete approximation given by (30) is

Et + 3̃DE = ε X̃D2E + P−1
[
σ−1
(
L D

−1E
)
e−1 + σ+1

(
L D

+1E
)
e+1
]+ T

(45)
E(0) = 0.

T = TDO + TBC is the truncation error.TDO andTBC come from the approximation of the
differential operator and the approximation of the boundary conditions, respectively. The
truncation errors have the general structure

TDO =


O(1xn)

O(1xm)
...

O(1xm)

O(1xn)

 , TBC =


O
(
1x(r −1)

)
0
...

0

O
(
1x(r −1)

)

 . (46)

In [31, 32] it is shown that difference approximations to mixed hyperbolic-parabolic
equations retain the accuracy of the interior scheme (O(1xm)) if a finite number of points
(independent of the total number) are closed with boundary stencils (O(1xn)) that are one
order less accurate. A requirement for that conclusion is that an energy estimate holds,
which in turn means that the mathematical boundary conditions must be approximated to
the order of the internal scheme. The discussion above implies thatn = m− 1 andr = m
are necessary.

We will now apply the theory in [31, 32] to the type of difference approximations consid-
ered in this paper, i.e., where difference operators of the SBP type are used, together with
a penalty formulation for the boundary conditions.
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First, we splitE and theT into two parts, i.e.,E = E1 + E2 andT = T1 + T2, where

T1 =


0
g1
...

gn−1

0

 = O(1xm), T2 =


g0

0
...

0
gn

 = O(1x(m−1)
)
. (47)

Next, we use the energy method to estimateE1. The energy method applied to (45) with
E, T replaced byE1, T1, and Theorem 3 leads directly to

‖E1‖P ≤ O(1xm).

Finally, we use the Laplace transform technique to take care of the boundary error and
estimateE2. So far, the treatment has been general. However, in order to keep the algebraic
complexity at a reasonable level, we now need to simplify and be specific. We will consider
the inviscid (ε = 0) Euler equations at an inflow boundary, where the first derivative is
approximated with

D = 1

21x



−2 2
−1 0 1

· · ·
· · ·

−1 0 1
−2 2


, P = 1x



1
2

1
· ·

1
1
2


. (48)

The half-plane problem obtained by Laplace-transforming (45) withE, T replaced by
E2, T2 becomes

s̃Ê2
0 + 3̄

(
Ê2

1 − Ê2
0

) = σ−1(3̄ + |3̄|)Ê2
0 + 1xĝ0,

s̃Ê2
j + 3̄

(
Ê2

j +1 − Ê2
j −1

)/
2 = 0, j ≥ 1, (49)

Ê2
j → 0, j → ∞,

wheres̃= s1x. The second and third equations in (49) lead to

E2
j = σ1

1
0
0

κ
j

1 + σ2

0
1
0

κ
j

2 + σ3

0
0
1

κ
j

3 , (50)

κ j =


−(s̃/λ j ) +√1 + (s̃/λ j )2, λ j > 0,

0, λ j = 0,

−(s̃/λ j ) −√1 + (s̃/λ j )2, λ j < 0,

(51)

where the branch of the square root is the one with positive real part for Re(s̃) ≥ 0. The case
whenλ j = 0 presents no problem; it only reduces the number of equations in (30). In the
sequel, we assumeλ j 6= 0.
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The first equation in (49) leads to

E(s̃)σ = 1xĝ0, E(s̃) = diag(s̃ + λ j κ j − (λ j + σ
j

−1(λ j + |λ j |)
)
, j = 1, 2, 3.

A nonsingularE(s̃)), i.e.,

det(E(s̃)) 6= 0, Re(s̃) ≥ 0, (52)

and (50), (51) lead to|Ê2
j | ≤ const|1xĝ0| for Re(s̃) ≥ 0; i.e., the Kreiss condition is satisfied.

Parseval’s relation and the fact thatE2
j (t) cannot depend ong0(T) for t < T leads to

∫ t

0

∣∣E2
j

∣∣2 dt ≤ const
∫ t

0
|1xg0|2 dt, j ≥ 0.

Finally, sinceg0 =O(1x), we obtain

‖E2‖P ≤ O(1x2).

It still must be shown that (52) holds. The inviscid condition for strict stabilityλ j +
σ

j
−1(λ j + |λ j |) ≤ 0 (see (42) and (51)), which implies̃s+ λ j κ j = |λ j |

√
1+ (s̃/λ j )2 ≥ 0,

leads directly to (52). The procedure to estimate the boundary error at an outflow boundary
is exactly the same as in the inflow case. We can summarize the result in the following
theorem.

THEOREM4. The approximation(30), (40), (41)of the problem(13), (14), (15)is second-
order accurate if Theorem3 holds and the first derivative operatorD= P−1Q is given by
(48).

Remark. The procedure above (exemplified in the second-order accurate case) to prove
accuracy is general. The last step where one uses the Laplace transform technique to estimate
the boundary errorE2 is not necessary (i) if the boundary stencils have the same order of
accuracy as the internal stencil, i.e.,n = m, and (ii) if the approximation of the mathematical
boundary conditions is one order more accurate, i.e.,r = m+ 1.

5.2. The Discrete Multiple Domain Problem

A finite difference approximation of the coupled problems (19) and (20) is

Ut + 3̃DLU = ε X̃D2
LU + F + BT0 + P−1

L

(
σ I

L (Un − V0)

+ σ V
L ((DLU )n − (DRV)0)

)
eL

U (0) = f
(53)

Vt + 3̃DRV = ε X̃D2
RV + F + BTm + P−1

R

(
σ I

R(V0 − Un)

+ σ V
R ((DRV)0 − (DLU )n)

)
eR

V(0) = f.

The characteristic variables in the left (subscript L) [x0 = −1, xn = 0] and right (subscript
R) [x0 = 0, xm = +1] domains areU andV , respectively, (see Fig. 1).BT0, BTm denote the
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FIG. 1. The mesh close to the interface atx = 0.

boundary terms atx = ±1, respectively. Definitions ofD,D2, 3̃, X̃, e−1, e+1 are given in
(31), (32), (33), andeL = (0, , , 1)T ⊗ I3, eR = (1, , , 0)T ⊗ I3.

The values ofσ−1 andσ+1 that lead to strict and strong stability for the discrete single
domain problem are given in Theorem 3. We must still determineσ I

L , σ V
L , σ I

R, σ V
R . Note

that the difference operatorsDL , D2
L ,DR,D2

R can be different in the left and right domains
and that1xL 6= 1xR in general.

5.2.1. Conservation

To calculate the strength and speed of a shock with finite mesh size, one needs a con-
servative scheme. Let us start by considering a continuous problem in conservation form,
ut + fx = 0, |x| ≤ 1, t ≥ 0. Integration over the domain leads to

d

dt

∫ +1

−1
u dx+ f+1 − f−1 = 0;

i.e., the total change ofu in the domain is only due to the flux through the boundaries. Note
that integration offx over the the domain reverses the differentiation process and leaves
information only at the boundaries.

Let F,DF denote the numerical approximations off, fx. The discrete SBP derivative
satisfies

fx −D f = Te1, D f = P−1Q f, Te1 = O(1xr ). (54)

Multiplying (54) with the operatorl T P, wherel T = [1, 1, . . . , 1] ⊗ I p ( f haspcomponents)
and observing thatf+1 − f−1 = ∫ +1

−1 fx dx leads to

l T P fx =
∫ +1

−1
fx dx +O(1xr ).

The operatorl T P is the discrete integration operator. This operator reverses the process of
differentiation, leaves information only at the boundaries, and converges to the continuous
integration operator as1x → 0.

Remark. The linear continuous problem (13) considered in this paper does of course not
produce any shocks. However, conservation is nevertheless a desirable property since we
aim for a discrete approximation with the same behaviour as the linear continuous problem,
which indeed is conservative. Moreover, it will be shown below (see the second Remark in
Section 5.2.2) that the conditions for conservation are a subset of the necessary conditions
for stability.
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We will now prove the following theorem.

THEOREM5. The approximation(53)of the problem(13) is conservative if

σ I
L − σ I

R − 3̄ = 0, σ V
L − σ V

R + ε X̄ = 0, (55)

where the matrices̄3 and X̄ are given in(11).

Proof. Multiplying (53) with l T
L PL andl T

R PR leads to(
l T
L PLU + l T

R PRV
)

t
= −(l T

L QL3̃U + l T
R Q̃R3̃V

)+ ε
(
l T
L RL X̃U + l T

R RRX̃V
)

+ (σ I
L − σ I

R

)
(UN − V0) + (σ V

L − σ V
R

)
(DUN −DV0)

+ 2(U, F)PL + 2(V, F)PR + BTi =0
i =m, (56)

whereBT includes the boundary terms atx = ±1. To obtain (56) we have made use of
Lemma 1.

The inviscid terms can be written

l T
L QL3̃U + l T

R QR3̃ = −(3̃U )0 + (3̃U )n − (3̃V)0 + (3̃V)m. (57)

Next, we consider the viscous terms. BothR= Q P−1Q andR= (−ST M + D)S lead to

l T
L QL P−1

L QL X̃U + l T
R QRP−1

R QRX̃V = −(X̃DU )0 + (X̃DU )n − (X̃DV)0 + (X̃DU )m.

(58)

By inserting (57) and (58) into (56), neglecting the boundary terms atx = ±1, lettingF = 0,
and applying condition (55), we obtain(l T

L PLU + l T
R PRV)t = 0; i.e., the approximation (53)

is conservative.j

5.2.2. Stability

We start with the following observation.

Remark. Stability of the one domain problemdoes notimply stability of the multi-
ple domain problem. Stability means that the solution can be estimated in terms of the
(bounded) boundary data. In a multiple domain problem, the boundary data are made up of
the solution(s) in the other domain(s). Boundedness of the data would require an a priori
assumption.

The main result of this paper is given below.

THEOREM 6. The approximation(53) of the problem(13) is both strictly and strongly
stable if

σ V
L = σε X̄, σ I

L = 1

2
(3̄ − βε X̄ − δ I3), β ≥ σ 2

2αR
+ (1 + σ)2

2αL
, δ ≥ 0, (59)

and if Theorems3 and5 hold.σ andδ are free parameters andαL , αR denote the minimal
eigenvalue of P if R=Q P−1Q and the minimal eigenvalue of(M + MT)/2 if R=(−STM+
D)S. The matrices̄3, X̄ are given in(11).
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Proof. Strict and strong stability of (53) follows if the interface treatment atx = 0 is of
a dissipative nature. For that reason we neglect the terms at the boundariesx = ±1 and use
F = 0. The energy method leads to

d

dt

(‖U‖2
PL

+ ‖V‖2
PR

) = −U T
(
3̃QL + QT

L 3̃
)
U − VT

(
3̃QR + QT

R3̃
)
V

+ εU T
(
X̃ RL + RT

L X̃
)
U + εVT

(
X̃ RR + RT

RX̃
)
V

+ 2U T
n

(
σ I

L (Un − V0) + σ V
L (DUn −DV0)

)
+ 2VT

0

(
σ I

R(V0 − Un) + σ V
R (DV0 −DUn)

)
. (60)

Equations (35), (36), and (37) lead to

−U T
(
3̃QL + QT

L 3̃
)
U = U T

0 3̄U0 − U T
n 3̄Un (61)

−VT
(
3̃QR + QT

R3̃
)
V = VT

0 3̄V0 − VT
m 3̄Vm (62)

U T
(
X̃ RL + RT

L X̃
)
U ≤ −2U0X̃DU0 + 2Un X̃DUn − 2αLDU T

n X̄DUn (63)

VT
(
X̃ RR + RT

RX̃
)
V ≤ −2V0X̄DV0 + 2VmX̄DVm − 2αRDVT

0 X̄DV0. (64)

By inserting (61)–(64) into (60) and neglecting boundary terms atx = ±1 we obtain

d

dt

(‖U‖2
PL

+ ‖V‖2
PR

) ≤ WT EW,

where

W =


Un

V0

DUn

DV0

 , E =


2σ I

L − 3̄ −(σ I
L + σ I

R

)
σ V

L + ε X̄ −σ V
L

−(σ I
L + σ I

R

)
2σ I

R + 3̄ −σ V
R σ V

R − ε X̄

σ V
L + ε X̄ −σ V

R −2αLε X̄ 0

−σ V
L σ V

R − ε X̄ 0 −2αRε X̄

 .

The problem (53) is strictly and strongly stable ifE is negative semidefinite.E is an
almost full matrix; to obtain explicit stability conditions, simplifications ofE are necessary.
The energy method applied to the continuous multiple domain problem leads to (23) which
suggests that the variables

W̃ = S̃W= 1√
2


Un − V0

Un + V0

DUn −DV0

DUn +DV0

, S̃ = 1√
2


+I −I 0 0

+I +I 0 0

0 0 +I −I

0 0 +I +I


are of interest. The use of these variables and the conservation conditions in Theorem 5
leads to

E1 = S̃ES̃T =


2
(
2σ I

L − 3̄
)

0 2σ V
L + ε X̄ ε X̄

0 0 0 0

2σ V
L + ε X̄ 0 −(αL + αR)ε X̄ (αR − αL)ε X̄

ε X̄ 0 (αR − αL)ε X̄ −(αL + αR)ε X̄

 .
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Remark. The first condition in Theorem 5 made the elements(E1)12 = (E1)21 equal to
zero. The second condition in Theorem 5 canceled the elements(E1)23 = (E1)32. These
conservation conditions are necessary in order to obtain negative semidefinitness ofE1

since(E1)22 is zero.

To show thatE1 is negative semidefinite, introduce the first condition in (59). Second,
add and subtract the matrix−2βε X̄ to the upper left block inE1. The condition for negative
semidefiniteness becomes

yT
1

(
2
(
2σ I

L − 3̄
)+ 2βε X̄

)
y1 + ε

[
(Y ⊗ R̄)T y2

]T[
3E2 ⊗ B̄

][
(Y ⊗ R̄)T y2

] ≤ 0, (65)

whereB̄ = R̄T X̄ R̄, 3E2 = YT E2Y, and

E2 =

 −2β (1 + 2σ) 1

(1 + 2σ) −(αL + αR) αR − αL

1 αR − αL −(αL + αR)

 .

The first term in (65) is nonpositive if the second relation in (59) holds. Negative definite-
ness that implies3E2 ≤ 0 is obtained if the third relation in (59) holds.j

5.2.3. Accuracy

In this section we will consider the accuracy close to the interface. The procedure is similar
to the one used in Section 5.1.2 for the single domain problem. The problem describing the
deviationsŨ j =U (xj , t)−U j (t) andṼ j = V(xj , t)− Vj (t) between the exact continuous
solutions and the discrete approximations given by (53) is

Ut + 3̃DLU = ε X̃D2
LU + TL + P−1

L

[
σ I

L (Un − V0) + σ V
L ((DLU )n − (DRV)0)

]
eL

U (0) = 0;
(66)

Vt + 3̃DRV = ε X̃D2
RV + TR + P−1

R

[
σ I

R(V0 − Un) + σ V
R ((DRV)0 − (DLU )n)

]
eR

V(0) = 0.

For simplicity, we have used the notationU = Ũ andV = Ṽ . Note also that the terms at
the boundariesx = ±1 are neglected. The treatment at the boundariesx = ±1 has been
discussed in Section 5.1.2.

TL andTR are the truncation errors from the approximation of the differential operator
and the interface conditions. The truncation errors have the general structure

TL =


...

O
(
1xm

L

)
O
(
1x(m−1)

L

)
 , TR =


O
(
1x(n−1)

R

)
O
(
1xn

R

)
...

 .

The discussion in Section 5.1.2 on the size of the truncation error is applicable also for the
interface problem.

Following the procedure in Section 5.1.2, one splits up the errors in two parts: the first
part(T1

L , T1
R) contains the truncation error of the internal scheme; the second part contains a

boundary contribution(T2
L , T2

R)with one order lower accuracy. The structure of these errors
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are

T1
L =


...

O
(
1xm

L

)
0

 , T2
L =


...

0

O
(
1x(m−1)

L

)
 ,

T1
R =

 0

O
(
1xn

R

)
...

 , T2
R =

O
(
1x(n−1)

R

)
0
...

 .

Also the error is divided into two parts; i.e., we considerU =U1 + U2 andV = V1 + V2.

By using the energy method,U1 andV1 will be bounded byT1
L andT1

R. This procedure
is straightforward, entirely similar to the one in Section 5.1.2, and will therefore not be
repeated here. Suffice it to say that the stability conditions given in Theorem 6 lead to

‖U1‖PL + ‖V1‖PR ≤ O(1xn
L

)+O(1xm
R

)
.

To boundU2 andV2 in terms ofT2
L andT2

R requires use of the Laplace transform technique.
That analysis is given in detail below.

Also in this case, we keep the algebraic complexity down by considering the inviscid
(ε = 0) Euler equations with the first derrivative approximated with (48). The problem for
Û2 = Û andV̂2 = V̂ obtained by Laplace-transforming (66) becomes

s̃LÛ n + 3̃(Û n − Û n−1) = 2σ I
L (Un − V0) + 1xL ĝL

s̃RV̂0 + 3̃(V̂1 − V̂0) = 2σ I
R(V0 − Un) + 1xRĝR

s̃LÛ j + 3̄(Û j +1 − Û j −1)/2 = 0, j ≤ n − 1,

s̃RV̂j + 3̄(V̂j +1 − V̂j −1)/2 = 0, j ≥ 1,

Û j → 0, j → −∞,

V̂j → 0, j → ∞,

(67)

wheres̃L = s1xL , s̃R = s1xR, ĝL =O(1x(n−1)
L ), andĝR =O(1x(m−1)

R ).
The last four equations in (67) lead to

U j = σ 1
L

1
0
0

(κ1
L

) j −n + σ 2
L

0
1
0

(κ2
L

) j −n + σ 3
L

0
0
1

(κ3
L

) j −n
, (68)

Vj = σ 1
R

1
0
0

(κ1
R

) j + σ 2
R

0
1
0

(κ2
R

) j + σ 3
R

0
0
1

(κ3
R

) j
, (69)

κ
j
L =


−(s̃L/λ j ) −√1 + (s̃/λ j )2, λ j > 0,

0, λ j = 0,

−(s̃L/λ j ) +√1 + (s̃/λ j )2, λ j < 0;
(70)

κ
j
R =


−(s̃R/λ j ) +√1 + (s̃/λ j )2, λ j > 0,

0, λ j = 0,

−(s̃R/λ j ) −√1 + (s̃/λ j )2, λ j < 0,

(71)
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where the branch of the square root is the one with a positive real part for Re(s̃) ≥ 0. Also
in this case,λ j = 0 presents no problem, only the number of equations in (30) is reduced.
We assumeλ j 6= 0 in the following.

The coefficientsσL = (σ 1
L , σ 2

L , σ 3
L)T andσR = (σ 1

R, σ 2
R, σ 3

R)T will be determined by the
first two equations in (67). They, together with the first condition in Theorem 5, lead to

E(s̃L , s̃R)

(
σL

σR

)
=
(

1xL ĝL

1xRĝR

)
,

(72)

E(s̃L , s̃R) =
(

s̃L I3 − 3̄κ−1
L + 3̄ − 2σ I

L 2σ I
L

2
(
σ I

L − 3̄
)

s̃RI3 + 3̄κR + 3̄ − 2σ I
L

)
,

whereκL = diag(κ1
L , κ2

L , κ3
L) andκR = diag(κ1

R, κ2
R, κ3

R).
A nonsingularE(s̃L , s̃R) leads via the Kreiss condition and Parseval’s relation (see Sec-

tion 5.1.2) to the estimate

‖U2‖PL ≤ O(1x2
L

)+O(1x2
R

)
, ‖V2‖PR ≤ O(1x2

L

)+O(1x2
R

)
.

It still must be shown that (52) forE, defined in (72), holds. A direct calculation using
(72), (70), and (71) leads to

Det(E) =
3∏

j =1

G j ,

G j = |λ j |2
(
1 +

√
1 + (s̃L/λ j )2

√
1 + (s̃R/λ j )2

)+ |λ j |
√

1 + (s̃L/λ j )2
√

1 + (s̃R/λ j )2.

Let
√

1 + (s̃L/λ j )2 = ηL + i ξL and
√

1 + (s̃R/λ j )2 = ηR + i ξR, whereηL , ηR are non-
negative. A simple algebraic test reveals that the imaginary part and the real part ofG j

cannot be zero at the same time if the inviscid condition for stability3̄ − 2σ I
L ≤ 0 in

Theorem 6 holds. We can summarize the result in the following theorem.

THEOREM 7. The approximation(53) of the problem(13) with ε = 0 is second-order
accurate; i.e.,

‖U‖PL + ‖V‖PR ≤ O(1x2
L

)+O(1x2
R

)
,

if Theorem6 holds and the first derivative operatorD= P−1Q is given by(48).

Remark. Also in the interface case (see Section 5.1.2) the procedure to prove accuracy,
which was exemplified above in the second-order accurate case, is general. The last step
in which one uses the Laplace transform technique to estimate the errorsU2 andV2 is not
necessary (i) if the stencils adjacent to the interface have the same order of accuracy as the
internal stencil, and (ii) if the interface conditions are one order more accurate.

5.2.4. The Discrete Multiple Domain Problem in Conservation Form

The discrete multiple domain problem (53) can be transformed to conservative form by
multiplying the equations withIn+1 ⊗ T̄(R̄S̄)−1, Im+1 ⊗ T̄(R̄S̄)−1, respectively. The result
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is

Ut + P−1
L

(
QL F I − εRL FV

)
= +(1/2)P−1

L

[(
FT

L − FT
R

)+ (1 + 2σ)ε
(
FV

L − FV
R

)− F B
L

]
(73)

Vt + P−1
R

(
QRF I − εRRFV

)
= −(1/2)P−1

R

[(
FT

R − FT
L

)− (1 + 2σ)ε
(
FV

R − FV
L

)+ F B
R

]
,

whereFT = F I − εFV and

F B
L = (δ I3 + εβ T̄B̄T̄−1

)
(Un − V0), F B

R = (δ I3 + εβ T̄B̄T̄−1
)
(V0 − Un).

In (73), the forcing terms and the boundary conditions atx ± 1 are neglected.

6. NUMERICAL EXPERIMENTS

By making one-dimensional computations using the nonlinear Euler and Navier–Stokes
equations, we can check whether the theoretical conclusions drawn from the analysis of the
constant coefficient problem agree with the results obtained in practice.

In the calculations below, we use the second-, fourth-, and sixth-order schemes reported
in [24]. To integrate in time, a five-stage fourth-order RK scheme [33] has been used.
Consider the stability condition (59). In the calculations below we have usedσ = −1/2 and
the conservative estimateσ I

L = 3̄/2− δ I , whereδ is determined through tests. Often we
useδ = 1.0. Equation (55) has been used to determine the other parameters.

First, we consider a sound propagation problem. The computational results, obtained
using the nonlinear Euler equations at Mach number 0.5, are compared with an exact solution
of the linearized problem. In Fig. 2, the errors for the second-, fourth-, and sixth-order
schemes using one domain (1Dom), four uniform domains (4Dom), and eight randomly
spaced domains (Rand) are shown. Clearly, the order of accuracy is independent of the
presence and location of the interfaces. Due to the small amplitudes(∝10−7) used in the
sixth-order cases, we encounter roundoff, which can be seen as the kink on the sixth-order
results.

Next, we consider a viscous shock propagation problem at Mach number 2.0 and Reynolds
number 150. The exact solution of the Navier–Stokes equation for this case can be found in
[34]. In Fig. 3, the errors for second-, fourth-, and sixth-order schemes using eight uniform
domains (Unif) and eight randomly spaced domains (NonU) are shown. Also in this case,
the order of accuracy is independent of the location of the interfaces.

The curves in the sixth-order case are not straight (see Fig. 3). The reason for this is that
the curves are formed as a mean value of 15 simulations, where different wave speeds (ws)
ranging from−0.25 to 0.5 are used. The individual results for each wave speed vary slightly
and lead to the nonstraight lines. Note that the trends are identical between the nonuniform
and uniform cases.

In Fig. 4, the propagating shock (ws= 0.25) for four different times is shown. In this
case, the sixth-order scheme and 24 gridpoints were used in each domain.

Finally, we will discuss two additional questions concerning accuracy and stability/
efficiency. The influence of interface conditions on accuracy is illustrated in Table I. The
calculations are run to a physical timeT = 3 at Mach number 2.0 and Reynolds number
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FIG. 2. Euler sound propagation.L2 errors in calculations using the Euler equations.

FIG. 3. Viscous shock propagation.L2 errors in calculations using the Navier–Stokes equations.
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FIG. 4. Viscous shock propagation. A domain with randomly spaced interfaces.

Re= 250. The sixth-order SBP scheme is used, and the number of total points is 289 evenly
distributed on the interval−1/2≤ x ≤ 1. The parameter in the study is the number of sub-
domains, keeping the total number of points constant. The number of subdomains ranges
from 1 to 24. With 24 subdomains, the spatial operator involves 12 boundary stencils (fifth-
order) and one sixth-order interior stencil. No further divisions are possible when using the
sixth-order SBP operator. Note that this case is only marginally less accurate than the single
domain case, for which the most points are discretized with sixth-order stencils.

The previous study indicates that there is little loss of accuracy when subdividing the
domain. There are, however, other costs associated with domain subdivision. Introduction

TABLE I

Variation of L2 Error on the

Number of Subdomains with

Grid Density Constant

Subdomains LOG10 error

1 −4.527
2 −4.584
4 −4.457
8 −4.643

12 −4.313
16 −4.467
18 −4.342
24 −4.358
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TABLE II

Variation of CFL Number and L2 Error with Reynolds Number

for Single and Multiple Domain Cases

Re LOG10 error CFLmax LOG10 error CFLmax

1000 −2.154 0.55 DNC
900 −2.242 0.55 −2.265 0.30
800 −2.347 0.55 −2.376 0.30
700 −2.477 0.60 −2.517 0.30
600 −2.637 0.60 −2.698 0.30
500 −2.841 0.60 −2.935 0.30
300 −3.429 0.65 −3.617 0.30
200 −4.027 0.65 −4.185 0.35
100 −5.741 0.60 −5.699 0.35
40 −7.892 0.50 −7.331 0.20
20 −9.535 0.45 −8.637 0.20
10 −10.968 0.40 −10.665 0.18

Note.DNC is short for “did not converge.”

of additional interfaces into the domain changes the resulting eigenspectrum of the semi-
discrete operator. In [22], a reduction in the effective CFL, when using a penalty boundary
procedure, was observed. We experience a similar reduction in the stability envelop as the
number of subdomains is increased.

In Table II, a study compares the effective CFL of a single domain calculation, with
those from a comparable grid divided into eight subdomains. Plotted are the errors and the
maximum stable CFL as a function of the Reynolds numbers for the two cases. Note that
while the errors are nearly equivalent for the two test cases, the maximum CFL for the
single domain case is nearly a factor of 2 larger.

In practice, using more than eight subdomains does not further reduce the effective
CFL. Specifically, a gradual decrease in CFL is observed until an asymptotic value is
achieved at approximately eight subdomains. The two test cases used in this study (one and
eight domains) represent the limits of stability experienced in practice. Work continues to
eliminate this reduction in CFL, although acceptable efficiency is achieved with the method
in its current form.

7. SUMMARY AND CONCLUSIONS

We have analyzed boundary conditions and interface conditions for the one-dimensional
Euler and Navier–Stokes equations. Both the continuous and semidiscrete problems have
been considered.

We have considered summation-by-parts operators and derived strictly and strongly stable
boundary and interface conditions for the Euler and Navier–Stokes equations. We have also
considered the question of accuracy, both in the general case and more specifically for a
second-order accurate approximation of the Euler equations.

The interface conditions are stable and conservative even if the finite difference operators
and mesh sizes vary from domain to domain. Numerical experiments which include a sound
propagating problem and a viscous shock propagating problem show that the new conditions
lead to accurate and stable results for the corresponding nonlinear problems also.
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It was also shown by numerical experiments that there is little loss of accuracy associated
with domain subdivision. However, the introduction of interfaces into the domain changed
the eigenspectrum of the semidiscrete operator and caused a reduction of the CFL number
by approximately a factor of 2.
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